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Value-distribution Theory for Holomorphic 
Almost Periodic Functions

By Sigurdur Helgason

1. Introduction
I am deeply indebted to the organizers for inviting me to participate in this conference 
on the occasion of the 100th anniversary of Harald Bohr.

My student years here in Copenhagen happened to coincide with the last 5 years of 
Bohr’s life. Although many years have passed I still have a vivid memory of his 
inspiring lectures and of his personal kindness.

Today I am going to talk about some work of my own from this time; this was a 
response to a prize question posed by the University for 1950 concerning holomorphic 
almost periodic functions. This work was inspired by papers by Bohr and by Jessen, 
together with the works of the Finnish mathematical school (primarily Rolf Nevanlinna 
and Lars Ahlfors) on value-distribution theory of meromorphic functions. The new 
results are described in §§ 4-5.

First I will describe some background material. Here I am indebted to Prof. B. 
Fuglede and Prof. H. Tornchave for some informative references. Bohr’s early work on 
Dirichlet series and the Riemann zeta-function led him to the theory of almost periodic 
functions. While the principal results of his theory of almost periodic functions on R 
have to some extent been absorbed in the theory of continuous functions on compact 
abelian groups, his theory of holomorphic almost periodic functions [2] has retained its 
independence and its charm.

A holomorphic function f(s) in a vertical strip (a, ft): a< Re 5 < ft is said to be almost 
periodic if to each 6 > 0 there exists a number I = 1(e) such that each interval Z()< t < t + I 
of length I contains a number T such that

-f(s) I < e

for all s in the strip. (Here trand ft are allowed to be infinite.) In other words, ify = <j + it, 
a < (J < ft, the function t f (o + it) is almost periodic on R and uniformly so for 
a < o < ft.

To each such function f one can associate its Dirichlet series

A eR,
n (1)
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which determines it uniquely. Here

(2)

where . is the mean value

For (jp almost periodic this limit does indeed exist and then the holomorphy of f 
implies that A is indeed independent of o. A uniformly convergent Dirichlet series (say 
g (s) = S(° e~^°sn)s for Re 5 > 1 + e) is almost periodic; on the other hand, to an almost 
periodic function f(s) in a strip can be associated a sequence f (s) of exponential 
polynomials S A^expfTV^jJ which converge to f(s) uniformly in any closed substrip 
fa < Re 5 < ß, where a < ctj < ß} < ß).

The original Dirichlet series

oo

1

a 
n 2 a e~^n)s 

n

were generalized to series of the form

SW A>v-
n

(3)

and both at the beginning and the end of his career Bohr investigated problems of 
convergence, summability etc. for such series (3). It is therefore worth stressing that in 
(1) the order of the exponents is unrestricted.

2. Result of Jessen. The Jensen Function
With the Riemann zeta-function as motivation it becomes a problem of interest to study 
the distribution of zeros of a function f(s) almost periodic in a strip (a, ß). For such 
functions f the basic general results were obtained by Jessen [6]. He showed the 
existence of the limit

Wf(°) = ./^(log |/fa + ?7J|) = lim -----
S-R^°° S-R

f Myr
J R

a+ it) I dt (1)
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(in spite of the fact that f may have zeros) and proved that it is a convex function of o. 
Jessen’s principal result is the following theorem. If a < a < ß' < ß let n(af ß‘; R,S) 
denote the number of zeros ofyin the rectangle a < o < ß‘, R < t < S counted with 
multiplicity.

Theorem 2.1. If is differentiable at a' and ß‘ then the density of zeros

H(a\ ß‘) = lim
S-R-*™

n(a, ß'; R, S)
S-R

exists and

H(a'’ = ~

If the function t—*f(o+it) has a fixed period p it turns out that this is equivalent to 
the classical Jensen formula in complex function theory; for this case the function <^is a 
piecewise linear function. Jessen called qfthe Jensen function for f

Indication of proof. First we assume that the boundary of the rectangle a < o < ß', 
R < t < S contains no zero off(s). Then by standard complex variable theory.

2x n(a', ß'; R, S) =

V R
f (a + it) f (o+ iR)v a

,f(a+iS)

Consider the vertical segments a + it (R t < S) and ß‘ + it (R — t < S). We can find a 
simply connected region ß containing both of these segments and no zeros for f We can 
then define the logarithm log/ft,) in Q, divide the relation above by S-R and let it tend 
to oo. We can restrict the R and S’ in such a way that the two last terms above give no 
contribution in the limit. The identity in Theorem 2.1 follows by taking real parts. The 
restriction on O''and ß' is then removed by a continuity argument.

It is now an interesting problem to characterize the convex functions cp(o) which 
arise as Jensen functions cp for suitable almost periodic f(s). This question was 
investigated by Buch [4] whose results imply for example that any convex function 
which is not linear on any interval arises in this fashion. A complete characterization of 
the (^.was given by Jessen and Tornehave [7], § 112. It implies for example that a convex 
function cp(o), a < o < ß, having infinitely many intervals of linearity in a compact 
subinterval of ((X, ß) cannot be a Jensen function cp if the slopes cp' (a) in these intervals 
are linearly independent over the rational numbers.
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3. Normal Almost Periodic Functions 
Already in his original paper [2] Bohr made a special investigation of almost periodic 
functions f(s) in a half-plane (-°°, ß) and expressed their behaviour near <7= -°o in 
terms of their Dirichlet expansion

0*0). (')
n

In [3] he singled out the so-called normal almost periodic functions f(s) for which among the 
nonzero exponents A the smallest one exists. These have the following property:

Given any a 6 C, there exists a half plane f—o ) which contains no a-point for f(s) (fe. a zero 
off(s) - A-

Let us for a moment view such a function f(s) via the substitution 5 = log z as a 
function <p(z) on a piece 0 < p < p{} of the Riemann surface of log z- The series (1) then 
becomes a generalized Laurent series

<p(z) ~ S A ZA" A #= 0. (2)

Let us for simplicity assume the normalizing property that the lowest nonzero expo­
nent, say Ais > 0. Bohr showed in [3] that the inverse function is also normal almost 
periodic. I have proved in [5] that a similar statement can be made about the 
composition of two normal almost periodic functions (having the above normalizing 
property).

4. Value-distribution Theory. The first Fundamental Theorem 
Consider a fixed ß < 00 and let z = f(s) be normal almost periodic in {—°°, ß} (that is 
normal almost periodic in any substrip (~K, ßß where ß{ < ß). We apply stereographic 
projection of the ^-plane C U (o°) onto the Riemann sphere S with diameter 1. 
tangential to the ^-plane at z = 0. Given 46CU {°°} the (chordal) distance of the 
corresponding points on S’ is given by

V(!+k,l2) d+k2l2)
so the arc-length element do on S' is

1^1do =
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For any a 6 C U {oo} let A„ denote the smallest exponent in the Dirichlet expansion of 
f(s) - a. (Here f(s) - oo is to be understood as \/f(s) which is also normal almost 
periodic). Let A denote the corresponding coefficient. We now introduce a quantity 
which measures how well the function f(s) approximates the value a on the line Re 5 — o.
Put

M(o,a) = ,/^{-log(k(f(cj+it), a))} + [log k(f(-^),a)], (1)

where the remainder term is

[log k(f(-<*>),a)] =

log k(f(-v>),a), f( 00 J a

= a ¥= oo

log L41 00
/f-ooj = a = oo.

The existence of the integral in (1) is clear from the existence of (1) § 2. Next we put 
n(o,a;R,S) = the number of a-points (with multiplicity) of f(s) in the rectangle 
-oo < T < o, R < t < S (with s - T + it).

N(o,a) = lim —- n(v,a;R,S) dr + n(-°°,a;-<x>,o°)a, (2)
S—R >°° kJ JI I —

where

7?(—°o ,ö,‘— oo ? oo) = Max(Afl,0).

The existence of the last limit is easily established by means of tools used in the proof of 
Theorem 2.1. The function N(o,a) is taken as a measure for the number of a-points off 
in the half-plane Re 5 < o. Note that the remainder term in (2) appears only if a = 
lim f(s).CJ—> — oo J ' 7

Theorem 4.1. Iff(s) is normal almost periodic in ß} then the sum

M(ø,a) + N(o,a) = T(o) (3)

is independent of a. Also 

T(o) = limS-R-»oo — 00
(4)
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where Ars(t) is the area of the Riemann surface s(f) over the Riemann sphere onto which the 
function f maps the rectangle -& < p < T, R < t < S.

The fact that the sum M(o, a) + N (o, a) is independent of a is an analog of 
Nevanlinna’s first fundamental theorem for meromorphic functions. It implies that if 
N(o,a) is small that is, iff(s) has few «-points, then the approximation term M(o,a) is 
large and vice-versa. The function T(o) is called the characteristic function. The geometric 
interpretation (4) of Ffcr) is an analog of a similar interpretation for the classical 
(periodic) case given by Ahlfors [1] and Shimizu [9],

The proof of Theorem 4.1 proceeds along lines similar to the classical theory 
(Nevanlinna [8], VI, § 3) but requires in addition some tools utilized in the proof of 
Theorem 2.1. A brief indication follows. Let A € C and put

w(s) = A +
1 v(s) = log(l + |rø(\)|2).

We use Gauss’ formula

(5)

on a region L2 which is the rectangle ct) < r < <7, R < t < S with small disks removed 
having the zeros off as the centers. Here Fis the boundary of Q (with the appropriate 
orientation), dl the arc element on F, A the Laplacian in the (T,t) variables and d!An the 
outgoing normal derivative.

The proof now proceeds along the following steps.
(i) We use the Laurent series of \/f(s) around each zero of f(s) to estimate the 

contributions to the left hand side of (5) of the circular parts of F. Then we let the radii 
of the disks considered tend to 0.

(ii) By direct computation

(Av)(s) = 4
(i+h(M2)2

Viewing w(s) as a map from the oplane to the Riemann sphere lying on the toplane we 
have
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Thus if X is the area function (for the function w(s)) we have (with 5 = T + it)

r r i»«i2

(iii) In (5) we divide by S~R and let S-R —* 00 through special values of Sand 7?, such 
that on the corresponding horizontal lines T + iR, t+ iS < r < o) f(s) is bounded 
away from 0. Then the horizontal pieces of the boundary Fin (5) give no contribution to 
the limit. The normal derivatives in (5) can be pulled outside the integral as dt do.

(iv) Now let crQ —■> - 00 in (5) and then integrate with respect to o from - so to <7. 
Considering the behaviour of w(s) as O'—» — 00 we obtain after some manipulation the 
formula

. (log \ l+|ze(oH-?7) |2) + N(o,Cf) —

2 o
= Ä W-los' •

(6)

The last term should be replaced by log(l/|A |) in case w(—00,) =
(v) Consider a fixed a € C and the function

l+ö/’fjJ _ 1
1 f(s)~a (f(s)-a) (1 + H )

The values ofte (s) are obtained from the values of/fc,) by rotation of the sphere so A is 
the same for w and for f. Also

(1 + lo^Jl2)-1 = k(wfs), 00; = k(f(s),d)

so when (6) is used on w we do obtain Theorem 4.1.

5. The Second Fundamental Theorem. Applications
While the first fundamental theorem expresses the constancy of the total affinity M(o,a) 
+ N(o,a) off(s) to the value a the second fundamental theorem will show that for most a

P
N(o,a) is the principal component. This is based on an estimate of the sum Sj M(o,aJ 
for arbitrary distinct a]5 ... a.
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Motivated by the classical (periodic) theory we consider the number n (o.a:R,S) of 
multiple roots in the equation f(s) - a = 0 in < T < o, R < t < S, such that a Å-fold 
root is only counted (k-\) times. We also put w^-00, a; — co, oo) = MaxfA\ 0/ where A^ 
is the smallest exponent in the expansion off'(s) - a. Clearly Ynfø, a; R, S) is the 
number of zeros for/" (5,) in the rectangle indicated. Then we put

n (r,a; R,S)dr + n(-<*y a;-°°y°)o (7)

and by the remark above, ZN (o,a) is bounded by the function A/o, O.ltakcn for the 
derivative f. In the next theorem (the analog of Nevanlinna’s second fundamental 
theorem) we distinguish between the two cases: ß finite and /?= °o.

Theorem 5.1. I. Let f(s) be normal almost periodic in {-00,00} and a}, ... ,a arbitrary distinct 
complex numbers. The inequality

t>
2 M(o, a ) + 2N(o,a) < T(o) + O(log T(ofi + O(log I al) v=l v a 1 (8)

holds for all o except on a set of o offinite measure.
II. Let f(s) be normal almost periodic in {—°°, 0} and a^ ... ,a^ any distinct complex numbers. Then 
inequality (8) holds with log|a| replaced by log( 11 (1 - ea)) and the inequality holds for all o < 0 
except for at set of o over which the integral of e° (l—e°)~{is finite.

In the proof of this theorem the passage from periodic functions to almost periodic 
functions gives rise to certain technical difficulties. The proofis therefore too complicat­
ed to describe here in detail. Instead, I will show how the theorem implies the analog of 
Nevanlinna’s defect relation.

Application. Letybe normal almost periodic in ß} 
defect by

For each a E C we define the

and the ramification index

In the case when fis a nonconstant normal almost periodic function in { —co} it is 
easily deduced from Theorem 4.1 that lim T(o)/o > 0. From Theorem 5.1 we can (7—>oo 
therefore deduce the following result.
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Theorem 5.2. Let f(s) be nonconstant and normal almost periodic in °°}. Then the defect 
ö(a) and the ramification index v(a) are strictly positive for at most countably many a and

Yd(a) + Yv(a) < 1.

The defect d(a) is a measure for how rarely f takes the value a. If a is omitted by f(s) 
altogether in-oo < Re5< 00 then d(a) = 1 so we deduce from 'ZÖ(a) < 1 that there can be 
at most one such value a.

For the case ß = 0 we obtain similarly the following result.

Theorem 5.3. Let f(s) be normal almost periodic in {—0} and assume

a->o T(o)

Then 

Yd(a) < 1.

Again this implies that f omits at most one value in the strip — oo < Re j < 0.



102 MIM 42:3

References

[1] Ahlfors, L. Beiträge zur Theorie der meromorphen Funktionen. 7. Congr. Math. Scand. Oslo 1929.
[2] Bohr, H. Zur Theorie der fastperiodischen Funktionen, III Teil. Dirichletentwicklung analytischer 

Funktionen. Acta Math. 47 (1926), 237-281.
[3] On the inverse function ofan analytic almost periodic function. Ann. of Math. 32 (1931), 

247-260.
[4] Buch, K. R. Uber die Nullstellenverteilung einer analytischen grenzperiodischen Funktion. Mat. Fys. 

Medd. Danske Vid. Selsk. 16 no. 4 1938.
[5] Helgason, S. Værdifordelingsteorifor analytiske næstenperiodiske functioner. Prisopgave, Københavns Univer­

sitet, 1950.
[6J Jessen, B. Über die Nullstellen einer analytischen fastperiodischen Funktion. Eine Verallgemeinerung 

der Jensenschen Formel. Math. Ann. 108 (1933), 485-516.
[7] Jessen, B. and H. Tornehave, Mean motions and zeros of almost periodic functions. Acta Math. 77 

(1945), 137-279.
[8] Nevanlinna, R. Eindeutige analytische Funktionen. Springer, Berlin 1936.
[9] Shimizu, T. On the theory of meromorphic functions. Japanese J. Math. 6 (1929), 119-171.

Department of Mathematics
MIT 2-182
Cambridge, MA 02139
U.S.A.


